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Abstract—Tremendous progress has been made on face detec-
tion in recent years using convolutional neural networks. While
many face detectors use designs designated for the detection of
face, we treat face detection as a general object detection task.
We implement a face detector based on YOLOv5 object detector
and call it YOLO5Face. We add a five-point landmark regression
head into it and use the Wing loss function. We design detectors
with different model sizes, from a large model to achieve the best
performance, to a super small model for real-time detection on an
embedded or mobile device. Experiment results on the WiderFace
dataset show that our face detectors can achieve state-of-the-art
performance in almost all the Easy, Medium, and Hard subsets,
exceeding the more complex designated face detectors. The code
is available at https://www.github.com/deepcam-cn/yolov5-face.

Index Terms—Face detection, convolutional neural network,
YOLO, real-time, embedded device, object detection

I. INTRODUCTION

Face detection is a very important computer vision task.
Tremendous progresses have been made since deep learning,
particularly convolutional neural network (CNN), has been
used in this task. As the first step of many tasks, including
face recognition, verification, tracking, alignment, expression
analysis, face detection attracts many researches and develop-
ments in the academia and the industry. And the performance
of face detection has improved significantly over the years. For
a survey of the face detection, please refer to the benchmark
results [1], [2]. There are many methods in this field from
different perspectives. Research directions include design of
CNN network, loss functions, data augmentations, and training
strategies. For example, in the YOLOv4 paper, the authors
explore all these research directions and propose the YOLOV4
object detector based on optimizations of network architecture,
selection of bags of freebies, and selection of bags of specials
[3].

In our approach, we treat the face detection as a general
object detection task. We have the same intuition as the
TinaFace [4]. Intuitively, face is an object. As discussed in
the TinaFace [4], from the perspective of data, the properties
that faces has, like pose, scale, occlusion, illumination, blur
and etc., also exist in other objects. The unique properties
in faces like expression and makeup can also correspond to
distortion and color in objects. Landmarks are special to face,
but they are not unique either. They are just key points of
an object. For example, in license plate detection, landmarks
are also used. And adding landmark regression in the object
prediction head is straightforward. Then from the perspective

of challenges encountered by face detection like multi-scale,
small faces and dense scenes, they all exist in generic object
detection. Thus, face detection is just a sub task of general
object detection.

In this paper, we follow this intuition and design a face
detector based on the YOLOv5 object detector [5]. We modify
the design for face detection considering large faces, small
faces, landmark supervision, for different complexities and
applications. Our goal is to provide a portfolio of models for
different applications, from very complex ones to get the best
performance to very simple ones to get the best trade-off of
performance and speed on embedded or mobile devices.

Our main contributions are summarized as following,
• We redesign the YOLOV5 object detector [5] as a face

detector, and call it YOLO5Face. We implement key
modifications to the network to improve the performance
in terms of mean average precision (mAP) and speed.
The details of these modifications will be presented in
Section III.

• We design a series of models of different model sizes,
from large models, to medium models, to super small
models, for needs in different applications. In addition
to the backbone used in YOLOv5 [5], we implement a
backbone based on ShuffleNetV2 [6], which gives the
state-of-the-art (SOTA) performance and fast speed for
mobile device.

• We evaluate our models on the WiderFace [1] dataset. On
VGA resolution images, almost all our models achieve
the SOTA performance and fast speed. This proves our
goal, as the tile of this paper claims, we do not need
to reinvent a face detector since the YOLO5Face can
accomplish it.

II. RELATED WORK

A. Object Detection

General object detection aims at locating and classifying
the pre-defined objects in a given image. Before deep CNN is
used, traditional face detection uses hand crafted features, like
HAAR, HOG, LBP, SIFT, DPM, ACF, etc. The seminal work
by Viola and Jones [7] introduces integral image to compute
HAAR-like features. For a survey of face detection using hand
crafted features, please refer to [8], [9].

Since the deep CNN shows its power in many machine
learning tasks, face detection is dominated by deep CNN
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methods. There are two-stage and one-stage object detectors.
Typical two-stage methods are the RCNN family, including
RCNN [10], fast-RCNN [11], faster-RCNN [12], mask-RCNN
[13], Cascade-RCNN [14].

The two-stage object detector have very good performance
but suffers from long latency and slow speed. In order to
overcome this problem, one-stage object detectors are studied.
Typical one-stage networks include SSD [15], YOLO [3], [5],
[16]–[18].

Other object detection networks include FPN [19], MMDe-
tection [20], EfficientDet [21], transformer(DETR) [22], Cen-
ternet [23], [24], and so on.

B. Face Detection

The researches for face detection follows the general ob-
ject detection. After the most popular and challenging face
detection benchmark WiderFace dataset [1] is released, face
detection develops rapidly focusing on the extreme and real
variation problem including scale, pose, occlusion, expression,
makeup, illumination, blur and etc.

A lot of methods are proposed to deal with these problems,
particularly the scale, context, anchor in order to detect small
faces. These methods include MTCNN [25], FaceBox [26],
S3FD [27], DSFD [28], RetinaFace [29], RefineFace [30], and
the most recent ASFD [31], MaskFace [32], TinaFace [4],
MogFace [33], and SCRFD [34]. For a list of popular face
detectors, the readers are referred to the WiderFace website
[2].

It is worth noting that some of these face detectors explore
unique characteristics in human face, the others are just general
object detector adopted and modified for face detection. Use
RetinaFace [29] as an example, it uses landmark (2D and
3D) regression to help the supervision of face detection, while
TinaFace [4] is simply a general object detector.

C. YOLO

YOLO first appeared in 2015 [16] as a different approach
than popular two-stage approaches. It treats object detection
as an regression problem rather than a classification problem.
It performs all the essential stages to detect an object using a
single neural network. As a result, it not only achieves very
good detection performance, but also achieves real-time speed.
Furthermore, it has excellent generalization capability, can be
easily trained to detect different objects.

Over the next five years, the YOLO algorithm have been
upgraded to five versions with many innovative ideas from the
object detection community. The first three versions - YOLOv1
[16],YOLOv2 [17], YOLOv3 [18]are developed by the author
of the original YOLO algorithm. Out of these three versions,
the YOLOv3 [18] is a milestone with big improvements in per-
formance and speed by introducing multi-scale features (FPN)
[19], better backbone network (Darknet53), and replacing the
Softmax classification loss with the binary cross-entropy loss.

In early 2020, after the original YOLO authors withdrawn
from the research field, YOLOv4 [3] was released by a
different research team. The team explore a lot of options in

almost all aspects of the YOLOv3 [18] algorithm, including
the backbone, and what they call bags of freebies, and bags
of specials. It achieves 43.5% AP (65.7% AP50) for the MS
COCO dataset at a real time speed of 65 FPS on Tesla V100.

One month later, the YOLOv5 [5] was released by another
different research team. In the algorithm prospective, the
YOLOv5 [5] does not have many innovations. And the team
does not publish a paper. These bring quite some controversies
about if it should be called YOLOv5. However, due to its
significantly reduced model size, faster speed, and similar per-
formance as YOLOv4 [3], and a full implementation in Python
(Pytorch), it is welcome by the object detection community.

III. YOLO5FACE FACE DETECTOR

In this section we present the key modifications we make
in YOLOv5 and make it a face detector - YOLO5Face.

A. Network Architecture

We use the YOLOv5 object detector [5] as our baseline and
optimize it for face detection. We introduce some modifica-
tions designated for detection of small faces as well as large
faces.

The network architecture of our YOLO5Face face detector
is depicted in Fig. 1. It consists of the backbone, neck, and
head. In YOLOv5, a new designed backbone called CSPNet
[5] is used. In the neck, an SPP [35] and a PAN [36] are
used to aggregate the features. In the head, regression and
classification are both used.

In Fig. 1 (a), the overall network architecture is depicted. In
Fig. 1 (b), a key block called CBS is defined, which consists
of Conv layer, BN layer, and a SILU [37] activation function.
This CBS block is used in many other blocks. In Fig. 1
(c), an output label for the head is shown, which include
bounding box (bbox), confidence (conf), classification (cls)
and five-point landmarks. The landmarks are our addition to
the YOLOv5 to make it a face detector with landmark output.
If without the landmark, the last dimension 16 should be
6. Please note that, the output dimensions 80*80*16 in P3,
40*40*16 in P4, 20*20*16 in P5, 10*10*16 in optional P6 are
for every anchor. The the real dimension should be multiplied
by the number of anchors.

In Fig. 1 (d), a Stem structure [38] is shown, which is
used to replace the original Focus layer in YOLOv5. The
introduction of the Stem block into YOLOv5 for face detection
is one of our innovations.

In Fig. 1 (e), a CSP block (C3) is shown. This block is
inspired by the DenseNet [39]. However, instead of adding
the full input and the output after some CNN layers, the input
is separated two two halves. One half is passed through a
CBS block, a number of Bottleneck blocks, which is shown
in Fig. 1 (f), then another Conv layer. The other half is passed
through a Conv layer, then the two are concatenated, followed
by another CBS block.

Fig. 1 (g), an SPP block [35] is shown. In this block the
three kernel sizes 13x13, 9x9, 5x5 in YOLOv5 are revised
to 7x7, 5x5, 3x3 in our face detector. This has been shown



as one of the innovations that improves the face detection
performance.

Note that we only consider VGA resolution input images.
To be more precise, the longer edge of the input image is
scaled to 640, and the shorter edge is scaled accordingly. The
shorter edge is also adjusted to be a multiple of the largest
stride of the SPP block. For example, when P6 is not used,
the shorter edge needs to be multiple of 32; when P6 is used,
the shorter edge needs to multiple of 64.

B. Summary of Key Modifications

The key modifications are summarized as follows.
• We add a landmark regression head to the YOLOv5

network. The Wing loss [40] is used a loss function for it.
This makes the face detector more useful since landmarks
are used in many applications. The landmark locations
are more accurate. This extra supervision helps the face
detector accuracy.

• We replace the Focus layer of YOLOv5 [5] with a
Stem block structure [38]. It increases the network’s
generalization capability, and reduces the computation
complexity while the performance does not degrade.

• We change the SPP block [35] and use a smaller kernel.
It makes the YOLOv5 more suitable for face detection
and improve the detection accuracy.

• We add a P6 output block with stride of 64. It increases
the capability to detect large faces. This is an item easily
overlooked by many researchers since their focuses are
more on the detection of small faces.

• We find that some data augmentation methods on general
object detection are not appropriate on face detection,
including up-down flipping and Mosaic. Removing the
up-down flipping improves the performance. When small
images are used, the Mosaic augmentation [3] degrades
the performance. However, when the small faces are
ignored, it works well. Random cropping helps the per-
formance.

• We design two super light-weight models based on
ShuffleNetV2 [6]. This backbone is very different from
the CSP network. These models are super small, while
achieve SOTA performance for embedded or mobile
device.

C. Landmark Regression

Landmarks are important characteristics for human face.
They can be used to do face alignment, face recognition,
face express analysis, age analysis etc. Traditional landmarks
consist of 68 points. They are simplified to 5 points in
MTCNN [25] Since then, the five-point landmarks have been
used widely in face recognition. The quality of landmarks
affects the quality of face alignment and face recognition.

The general object detector does not include landmarks. It
is straightforward to add it as a regression head. Therefore,
we add it into our YOLO5Face. The landmark outputs will
be used in align face images before they are sent to the face
recognition network.

General loss functions for landmark regression are L2, L1,
or smooth-L1. The MTCNN [25] uses the L2 loss function.
However, it is found these loss functions are not sensitive
to small errors. To overcome this problem, the Wing-loss is
proposed [40],

wing(x) =

{
w · ln(1 + |x|/e), if x < w

|x| − C, otherwise
(1)

The non-negative w sets the range of the nonlinear part to
(−w,w), e limits the curvature of the nonlinear region and
C = w − wln(1 + w/e) is a constant that smoothly links the
piecewise-defined linear and nonlinear parts. Plotted in Fig. 2
is this Wing loss function with different parameters wand e It
can be seen that the response at small error area near zero is
boosted compared to the L2, L1, or smooth-L1 functions.

The loss functions for landmark point vector s = {si}, and
its ground truth s′ = {si}, where i = 1, 2, ..., 10, is defined
as,

lossL(s) =
∑
i

wing(si − s′i) (2)

Let the general object detection loss function of YOLOv5 be
lossO(bounding box, class, probability), then the new total
loss function is,

loss(s) = lossO + λL · lossL (3)

where the λL is a weighting factor for the landmark regression
loss function.

D. Stem Block Structure

We use a stem block similar to [38]. The stem block is
shown in Fig.1 (d). With this stem block, we implement a
stride = 2 in the first spatial down-sampling on the input image,
and increase the number of channels. With this stem block,
the computation complexity only increase marginally, while a
strong representation capability is ensured.

Model Backbone (D,W) With P6?
YOLOv5s YOLO5-CSPNet [5] (0.33,0.50) No

YOLOv5s6 YOLO5-CSPNet (0.33,0.50) Yes
YOLOv5m YOLO5-CSPNet (0.50,0.75) No

YOLOv5m6 YOLO5-CSPNet (0.50,0.75) Yes
YOLOv5l YOLO5-CSPNet (1.0,1.0) No
YOLOv5l6 YOLO5-CSPNet (1.0,1.0) Yes
YOLOv5n ShuffleNetv2 [6] - No

YOLOv5n-0.5 ShuffleNetv2-0.5 [6] - No
TABLE I

DETAIL OF IMPLEMENTED YOLO5FACE MODELS, WHERE (D,W) ARE
THE DEPTH AND WIDTH MULTIPLES OF THE YOLOV5 CSPNET [5]. THE

NUMBER OF PARAMETERS AND FLOPS ARE LISTED IN TABLE III.

E. SPP with Smaller Kernels

Before forwarding to feature aggregation block in the neck,
the output feature maps of the YOLO5 backbone are sent to
an additional SPP block [35] to increase the receptive field
and separate out the most important features. Instead of many
CNN models containing fully connected layers which only
accept input images of specific dimensions, SPP is proposed



Fig. 1. The proposed YOLO5Face network architecture.



Modification Method Easy Medium Hard Params(M) Flops(G)

Stem block Focus+Conv 93.56 92.54 82.56 7.091 6.174
Stem Block 94.13 92.87 82.79 7.075 5.751

SPP Kernel (13,9,5) 93.43 91.12 82.64 - -
(7,5,3) 94.33 92.61 84.15 - -

P6 block No 94.31 92.52 83.15 7.075 5.751
Yes 95.29 93.61 83.13 12.386 6.28

Data augmentation

Baseline (with Mosaic) 91.34 90.21 83.54 - -
- up-down flipping 91.87 90.56 83.58 - -

+ Ignore small faces 94.12 92.21 82.21 - -
+ Random crop 94.34 92.58 83.17 - -

TABLE II
ABLATION STUDY RESULTS ON THE WIDERFACE VALIDATION DATASET.

Detector Backbone Easy Medium Hard Params(M) Flops(G)
DSFD [28] ResNet152 [41] 94.29 91.47 71.39 120.06 259.55

RetinaFace [29] ResNet50 [41] 94.92 91.90 64.17 29.50 37.59
HAMBox [42] ResNet50 [41] 95.27 93.76 76.75 30.24 43.28
TinaFace [4] ResNet50 [41] 95.61 94.25 81.43 37.98 172.95

SCRFD-34GF [34] Bottleneck ResNet 96.06 94.92 85.29 9.80 34.13
SCRFD-10GF [34] Basic ResNet [41] 95.16 93.87 83.05 3.86 9.98

Our YOLOv5s YOLOv5-CSPNet [5] 94.33 92.61 83.15 7.075 5.751
Our YOLOv5s6 YOLOv5-CSPNet 95.48 93.66 82.8 12.386 6.280
Our YOLOv5m YOLOv5-CSPNet 95.30 93.76 85.28 21.063 18.146
Our YOLOv5m6 YOLOv5-CSPNet 95.66 94.1 85.2 35.485 19.773

Our YOLOv5l YOLOv5-CSPNet 95.9 94.4 84.5 46.627 41.607
Our YOLOv5l6 YOLOv5-CSPNet 96.38 94.90 85.88 76.674 45.279
Our YOLOv5x6 YOLOv5-CSPNet 96.67 95.08 86.55 141.158 88.665

SCRFD-2.5GF [34] Basic Resnet 93.78 92.16 77.87 0.67 2.53
SCRFD-0.5GF [34] Depth-wise Conv 90.57 88.12 68.51 0.57 0.508

RetinaFace [29] MobileNet0.25 [43] 87.78 81.16 47.32 0.44 0.802
FaceBoxes [26] - 76.17 57.17 24.18 1.01 0.275
Our YOLOv5n ShuffleNetv2 [6] 93.61 91.54 80.53 1.726 2.111

Our YOLOv5n0.5 ShuffleNetv2-0.5 [6] 90.76 88.12 73.82 0.447 0.571
TABLE III

COMPARISON OF OUR YOLO5FACE AND EXISTING FACE DETECTORS ON THE WIDERFACE VALIDATION DATASET [1].

to aim at generating a fixed-size output irrespective of the input
size. In addition, SPP also helps to extract important features
by pooling multi-scale versions of itself.

In YOLO5, three kernel sizes 13x13,9x9,5x5 are used [5].
We revise them to use smaller size kernels 7x7, 5x5 and 3x3.
These smaller kernels help to detect small faces more easily,
and increase the overall face detection performance.

F. P6 Output Block

The backbone of YOLO object detector has many layers. As
the feature becomes more and more abstract as the layers go
deeper, the spatial resolution of feature maps decreases due to
downsampling, which leads to to a loss of spatial information
as well as fine-grained features. In order to preserve these
fine-grained features, the FPN [19] is introduced to YOLOv3
[18].

In FPN [19], the fine-grained features take a long path
traveling from low-level to high-level layers. To overcome
this problem, the PAN is proposed to add a bottom-up
augmentation path along the top-down path used in FPN.
In addition, in the connection of the feature maps to the
lateral architecture, the element-wise addition operation is
replaced with concatenation. In FPN, object predictions are
done independently on different scale levels, which do not
utilize information from other feature maps, and may produce
duplicated predictions. In PAN [36], the output feature maps of

bottom-up augmentation pyramid are fused by using (Region
of Interest) ROI align and fully connected layers with element-
wise max operation.

In YOLOv5, there are three output blocks in the PAN output
feature maps, called P3,P4,P5 corresponding to 80x80x16,
40x40x16, 20x20x16, with strides 8,16,32, respectively. In
our YOLO5Face, we add an extra P6 output block, whose
feature map is 10x10x16 with stride 64. This modification
particularly helps the detection of large faces. While almost
all face detectors focus on improving detection of small faces,
detection of large faces can be easily overlooked. We fill this
hole by adding the P6 output block.

G. ShuffleNetV2 as Backbone

The ShuffleNet [44] is an extremely efficient CNN for
mobile device. The key block is called the ShuffleNet block.
It utilizes two new operations, pointwise group convolution
and channel shuffle, to greatly reduce computation cost while
maintaining accuracy.

The ShuffleNetv2 [44] is an improved version of Shuf-
fleNet. It borrows the shortcut network architecture similar
to the DenseNet [39], and the the element wise addition is
changed to concatenation, similar to the change in PAN [36]
in YOLOv5 [5]. But different from DenseNet, ShuffleNetV2
does not densely concatenate, and after the concatenation, the



channel shuffling is used to mix the features. This makes the
ShuffleNetV2 a super fast network.

We use the ShuffleNetV2 as the backbone in YOLOv5 and
implement super small face detectors YOLOv5n-Face, and
YOLOv5n0.5-Face.

IV. EXPERIMENTS

A. Dataset

The WiderFace dataset [1] is the largest face detection
dataset, which contains 32,203 images and 393,703 faces.
For its large variety of scale, pose, occlusion, expression,
illumination and event, it is close to reality and is very
challenging.

The whole dataset is divided into train/validation/test sets
by ratio 50%/10%/40% within each event class. Furthermore,
each subset is defined into three levels of difficulty: Easy,
Medium, and Hard. As it names indicates, the Hard subset
is most challenging. So the performance on the Hard subset
reflects best the effectiveness of a face detector.

Unless specified otherwise, the WiderFace dataset [1] is
used in this work. In the face recognition with YOLO5Face
landmark and alignment, the Webface dataset [45] is used.
The FDDB dataset [46] is used in testing to demonstrate our
model’s performance on cross-domain datasets.

B. Implementation Details

We use the YOLOv5-4.0 codebase [5] as our starting point
and implement all the modifications we describe earlier in
PyTorch.

The SGD optimizer is used. The initial learning rate is 1E-2,
the final learning rate is 1E-5, and the weight decay is 5E-3. A
momentum of 0.8 is used in the first three warming-up epochs.
After that, the momentum is changed to 0.937. The training
runs 250 epochs with a batch size of 64. The λL = 0.5 is
optimized by exhaust search.

Implemented Models. We implement a series of face
detector models, as listed in Table I. We implement eight
relatively large models, including extra large-size mod-
els (YOLOv5x, YOLOv5x6), large-size models (YOLOv5l,
YOLOv5l6) medium-size models (YOLOv5m, YOLOv5m6),
and small-size models (YOLOv5s, YOLOv5s6). In the name
of the model, the last postfix 6 means it has the P6 output block
in the SPP. These models all use the YOLOv4 CSPNet as the
backbone with different depth and width multiples, denoted as
D and W in Table I.

Furthermore, we implement two super small-size models,
YOLOv5n and YOLOv5n0.5, which use the ShuffleNetv2
and ShuffleNetv2-0.5 [6] as the backbone. Except for the
backbone, all other main blocks, including the stem block,
SPP, PAN, are the same as in the larger models.

The number of parameters and number of flops of all these
models is listed in Table III for comparison with existing
methods.

FaceDetect traning dataset FNMR
RetinaFace [29] WiderFace [1] 0.1065

YOLOv5s WiderFace 0.1060
YOLOv5s +Multi-task facial [47] 0.1058
YOLOv5m WiderFace 0.1056
YOLOv5m +Multi-task facial 0.1051

TABLE IV
EVALUATION OF YOLO5FACE LANDMARK ON FACE RECOGNITION ON

THE WEBFACE TEST DATASET [45].

C. Ablation Study

In this subsection we present the effects of the modifications
we have in our YOLO5Face. In this study we use the YOLO5s
model. We use the WiderFace [1] validation dataset and use
the mAP as the performance metric.

Stem Block vs. Focus Layer. The mAP performances of the
stem block [38] and the focus layer are listed in first panel of
Table II. Also listed are the number of parameters and number
of flops. From the results we see that the stem block improves
the mAP by 0.57%, 0.33%, and 0.23% on the easy, medium,
and hard subset, respectively.

SPP with Smaller Size Kernels. The mAP performances
of the SPP [35] kernel sizes (7x7,5x5,3x3) and original kernel
sizes (13x13,9x9,5x5) are listed in the second panel of Table II.
From the results we see that the smaller kernel sizes improve
the mAP by 0.9%, 1.49%, and 1.41% on the easy, medium,
and hard subset, respectively. The improvements are larger
than that from the Stem block [38].

P6 Output Block. The mAP performances of the addition
of the P6 output block are listed in the third panel of Table II.
From the results we see that the P6 block improves the mAP
by 0.98%, 1.09%, and -0.02% on the easy, medium, and hard
subset, respectively.

Data Augmentation Performance results of a few data
augmentation methods are listed in the fourth panel of Table
II. From the results we see that ignoring small faces, random
crop help the mAP in the Easy and Medium dataset, while the
Mosaic [3] helps the mAP in the Hard dataset. As we explain
before, the Mosaic has to work with the ignoring small faces,
otherwise the performance degrades dramatically.

Please note that in these experiments the network configu-
rations are not incremental. However in each of set of experi-
ment, the baselines for the two networks are the same to make
the comparison fair. For example in the SPP experiments,
except for the kernel sizes are different, all other settting are
identical.

D. YOLO5Face for Face Recognition

Landmark is critical for face recognition accuracy. In Reti-
naFace [29], the accuracy of the landmark is evaluated with
the MSE between estimated landmark coordinates and their
ground truth and with the face recognition accuracy. The
results show that the RetinaFace has better landmarks than
the older MTCNN [25].

In this work, we also use face recognition to evaluate the ac-
curacy of landmarks of the YOLO5Face. We use the Webface
test dataset, which is the largest face dataset with noisy 4M



Fig. 2. The precision-recall (PR) curves of face detectors, (a) validation-Easy, (b)validation-Medium, (c) validation-Hard, (d) test-Easy, (e) test-Medium, (f)
test-Hard.



Fig. 3. Some examples of detected face and landmarks, where the first row
is from RetinaFace [29], and second row is from our YOLOv5m.

identities/260M faces, and cleaned 2M identities/42M faces
[45]. This dataset is used in the ICCV2021 Masked Face
Recognition (MFR) challenge [48]. In this challenge, both
masked face images and standard face images are included,
and a metric False Non-Match Rate (FNMR) at False Match
Rate (FMR) = 1E-5 is used. The FNMR*0.25 for MFR plus
FNMR*0.75 for standard face recognition is combined as the
final metric.

By default, the RetinaFace [49] is used as the face detec-
tor on the dataset. We compare our YOLO5Face with the
RetinaFace on this dataset. We use ArcFace [50] framework
with Resnet124 [41] as backbone. Extracted features of two
models trained on the Glint360k dataset [51] are concatenated
as the baseline model. We replace the RetinaFace with our
YOLO5Face. We test two models, a small model YOLOv5s,
and a medium model YOLOv5m. More details can be found
in [52].

The results are listed in Table IV. From the results, we
see that both our small and medium models outperform the
RetinaFace [29]. In addition, we notice that there are very few
large face images in the WiderFace dataset, so we add some
large face images from the Multi-task-facial dataset [47] into
the YOLO5Face training dataset. We find that this technique
improves face recognition performance.

shown in Figure 3 are some detected Webface [45] faces
and landmarks using the RetinaFace [29] and our YOLOv5m.
On the faces of a large pose, we can visually observe that our
landmarks are more accurate, which has been prooved in our
face recognition results shown in Table IV.

E. YOLO5Face on WiderFace Dataset

We compare our YOLO5Face with many existing face
detectors on the WiderFace dataset. The results are listed in
Table III, where the previous SOTA results and our best results
are both highlighted.

We first look at the performance of relatively large models
whose number of parameters is larger than 3M and the number
of flops is larger than 5G. All existing methods achieve mAP in
94.27-96.06% on the Easy subset, 91.9-94.92% on the Medium
subset, and 71.39-85.29% on the Hard subset. The most re-
cently released SCRFD [34] achieves the best performance in
all subsets. Our YOLO5Face (YOLOv5x6) achieves 96.67%,
95.08%, 86.55% on the three subsets, respectively. We achieve
the SOTA performance on all the Easy, Medium, and Hard
subsets.

Method MAP
ASFD [31] 0.9911

RefineFace [30] 0.9911
PyramidBox [58] 0.9869
FaceBoxes [26] 0.9598
Our YOLOv5s 0.9843
Our YOLOv5m 0.9849
Our YOLOv5l 0.9867
Our YOLOv5l6 0.9880

TABLE V
EVALUATION OF YOLO5FACE ON THE FDDB DATASET [46].

Next, we look at the performance of super small models
whose number of parameters is less than 2M and the number
of flops is less than 3G. All existing methods achieve mAP
in 76.17-93.78% on the Easy subset, 57.17-92.16% on the
Medium subset, and 24.18-77.87% on the Hard subset. Again,
the SCRFD [34] achieves the best performance in all sub-
sets. Our YOLO5Face (YOLOv5n) achieves 93.61%, 91.54%,
80.53% on the three subsets, respectively. Our face detector
has a little bit worse performance than the SCRFD [34] on the
Easy and Medium subsets. However, on the Hard subset, our
face detector is leading by 2.66%. Furthermore, our smallest
model, YOLOv5n0.5, has good performance, even its model
size is much smaller.

The precision-recall (PR) curves of our YOLO5Face face
detector, along with the competitors, are shown in Figure
2. The leading competitors include DFS [53], ISRN [54],
VIM-FD [55], DSFD [28], PyramidBox++ [56], SRN [57],
PyramidBox [58] and more. For a full list of the competitors
and their results on the WiderFace [1] validation and test
datasets, please refer to [2]. In the results on the validation
dataset, our YOLOv5x6-Face detector achieves 96.9%, 96.0%,
91.6% mAP on the Easy, Medium, and Hard subset, respec-
tively, exceeding the previous SOTA by 0.0%, 0.1%, 0.4%. In
the results on the test dataset, our YOLOv5x6-Face detector
achieves 95.8%, 94.9%, 90.5% mAP on the Easy, Medium,
and Hard subset, respectively with 1.1%, 1.0%, 0.7% gap to
the previous SOTA. Please note that, in these evaluations, we
only use multiple scales and left-right flipping without using
other test-time augmentation (TTA) methods. Our focus is
more on the VGA input images, where we achieve the SOTA
in almost all conditions.

F. YOLO5Face on FDDB Dataset

FDDB dataset [46] is a small dataset with 5171 faces
annotated in 2845 images. To demonstrate our YOLO5Face’s
performance on the cross-domain dataset, we test it on the
FDDB dataset without retraining on it. The performances of
true positive rate (TPR) when the number of false-positive is
1000 are listed in Table 4. Please note that it is pointed out
in RefineFace [30] that the annotation of FDDB misses many
faces. In order to achieve their performance of 0.9911, the
RefineFace modifies the FDDB annotation. In our evaluation,
we use the original FDDB annotation without modifications.
RetinaFace [29] is not evaluated on the FDDB dataset.



V. CONCLUSION

In this paper we present our YOLO5Face based on
YOLOv5 object detector [5]. We implement eight models.
Both the largest model YOLOv5l6 and the super small model
YOLOv5n achieve close to or exceeding SOTA performance
on the WiderFace [1] validation Easy, Medium and Hard
subsets. This proves the effectiveness of our YOLO5Face in
not only achieving the best performance, but also running
fast. Since we open-source the code, a lot of applications and
mobile apps have been developed based on our design, and
achieve impressive performance.
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